Increasing Generalizability: Naïve Bayes Vs K-Nearest Neighbors

CHF 59.95
Auf Lager
SKU
9EJLSD9FMJ0
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Marketing research is often criticized for lacking generalizability and inability to reproduce results. The problem lies in using models to fit data, rather than determining the predictive power of models in conditions of uncertainty. For instance, how does the predictive power of a model change when customer dynamics change? The current study suggests that marketing researchers can supplement existing research methods with non-probabilistic prediction methods, such as the kNN algorithm-based model. Unlike probabilistic models that rely on past outcomes to predict future events - and lose predictive power when newer events are observed - non-probabilistic models better capture uncertainty. In the current study, the predictive power of the kNN algorithm-based model and the Naïve Bayes model is compared using data from two real markets. The kNN algorithm-based model provides more accurate predictions, showing the utility of combining the kNN algorithm-based model with existing marketing research to improve the predictability and generalizability of models. Implications for research and future research are discussed.

Autorentext

Fahad is currently an Assistant Professor (Marketing) at the School of Management, FAST-NUCES-LAHORE. Fahad teaches courses related to econometrics, machine learning, consumer behavior, and marketing research. Fahad holds a Ph.D. in Business and Management (Warwick Business School) and an MPhil (Judge Business School).

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786204980638
    • Genre Business Administration
    • Sprache Englisch
    • Anzahl Seiten 56
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T4mm
    • Jahr 2022
    • EAN 9786204980638
    • Format Kartonierter Einband
    • ISBN 6204980637
    • Veröffentlichung 20.06.2022
    • Titel Increasing Generalizability: Naïve Bayes Vs K-Nearest Neighbors
    • Autor Fahad Mansoor Pasha
    • Untertitel DE
    • Gewicht 102g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470