Incremental Learning for Motion Prediction of Pedestrians and Vehicles

CHF 134.35
Auf Lager
SKU
OM7BQK6K2PH
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

This book focuses on the problem of moving in a cluttered environment with pedestrians and vehicles. A framework based on Hidden Markov models is developed to learn typical motion patterns which can be used to predict motion on the basis of sensor data.

Modeling and predicting human and vehicle motion is an active research domain.Owing to the difficulty in modeling the various factors that determine motion(e.g. internal state, perception) this is often tackled by applying machinelearning techniques to build a statistical model, using as input a collectionof trajectories gathered through a sensor (e.g. camera, laser scanner), and thenusing that model to predict further motion. Unfortunately, most currenttechniques use offline learning algorithms, meaning that they are not able tolearn new motion patterns once the learning stage has finished.

This books presents a lifelong learning approach where motion patterns can belearned incrementally, and in parallel with prediction. The approach is based ona novel extension to hidden Markov models, and the main contribution presentedin this book, called growing hidden Markov models, which gives us the ability tolearn incrementally both the parameters and the structure of the model. Theproposed approach has been extensively validated with synthetic and realtrajectory data. In our experiments our approach consistently learned motionmodels that were more compact and accurate than those produced by two otherstate-of-the-art techniques, confirming the viability of lifelong learningapproaches to build human behavior models.


Recent research in the area of motion prediction of Pedestrians and Vehicles Presents the modeling, learning and prediction of motion Based on the winning thesis of the EURON Georges Giralt award

Inhalt
I: Background.- Probabilistic Models.- II: State of the Art.- Intentional Motion Prediction.- Hidden Markov Models.- III: Proposed Approach.- Growing Hidden Markov Models.- Learning and Predicting Motion with GHMMs.- IV: Experiments.- Experimental Data.- Experimental Results.- V: Conclusion.- Conclusions and Future Work.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642263859
    • Genre Elektrotechnik
    • Auflage 2010
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 176
    • Größe H235mm x B155mm x T10mm
    • Jahr 2012
    • EAN 9783642263859
    • Format Kartonierter Einband
    • ISBN 3642263852
    • Veröffentlichung 05.09.2012
    • Titel Incremental Learning for Motion Prediction of Pedestrians and Vehicles
    • Autor Alejandro Dizan Vasquez Govea
    • Untertitel Springer Tracts in Advanced Robotics 64
    • Gewicht 277g
    • Herausgeber Springer Berlin Heidelberg

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38