Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Inferences for Gompertz Model:Bayesian and non-Bayesian Approaches
Details
The Gompertz distribution plays an important role in modeling survival times, human mortality, growth model and actuarial tables. The subject of progressive censoring has received considerable attention in the past few years, due in part to the availability of high speed computing resources, which make it both a feasible topic for simulation studies for researchers and a feasible method of gathering lifetime data for practitioners. In this book, we have considered Bayesian and non Bayesian estimators for Gompertz parameters, some survival time parameters, namely, reliability and hazard functions and the coefficient of variation by using both progressive first-failure censoring scheme and an adaptive Type-II progressive censoring scheme. We have considered Bayesian and non Bayesian approaches Also, we develop different confidence intervals, using asymptotic distributions of the maximum likelihood estimators and two different bootstrap methods. Also, we shown how record data can be used to provide inferences for the stress strength reliability model using Markov chain Monte Carlo (MCMC). Bayesian prediction intervals based on progressive first-failure-censored have been discussed
Autorentext
Author: Dr. Gamal A.Abd-Elmougod,lecture of statistics at sohag University, Egypt.Co-Author: Dr. Ahmed A.Soliman is a professor of statistics at Sohag University, Egypt.Currently he with the department of mathematics, Islamic University, Madinah, KSA. His research interests including Bayesian survival analysis, censoring methodology.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659267789
- Sprache Englisch
- Größe H220mm x B150mm x T13mm
- Jahr 2012
- EAN 9783659267789
- Format Kartonierter Einband
- ISBN 3659267783
- Veröffentlichung 06.10.2012
- Titel Inferences for Gompertz Model:Bayesian and non-Bayesian Approaches
- Autor Gamal Abd El-mougod , Ahmed Soliman
- Untertitel Bayesian and non-Bayesian Approaches
- Gewicht 304g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 192
- Genre Mathematik