Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Innovations in Machine Learning
Details
Machine learning is currently one of the most rapidly growing areas of research in computer science. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. This book covers the three main learning systems; symbolic learning, neural networks and genetic algorithms as well as providing a tutorial on learning casual influences. Each of the nine chapters is self-contained.
Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Postgraduate since it shows the direction of current research.
Latest research in machine learning
Inhalt
A Bayesian Approach to Causal Discovery.- A Tutorial on Learning Causal Influence.- Learning Based Programming.- N-1 Experiments Suffice to Determine the Causal Relations Among N Variables.- Support Vector Inductive Logic Programming.- Neural Probabilistic Language Models.- Computational Grammatical Inference.- On Kernel Target Alignment.- The Structure of Version Space.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642067884
- Auflage Softcover reprint of hardcover 1st edition 2006
- Editor Dawn E. Holmes
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T16mm
- Jahr 2010
- EAN 9783642067884
- Format Kartonierter Einband
- ISBN 3642067883
- Veröffentlichung 23.11.2010
- Titel Innovations in Machine Learning
- Untertitel Theory and Applications
- Gewicht 446g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 292