Intelligent Image Categorization

CHF 84.40
Auf Lager
SKU
4CCBD4S5ND4
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Algorithms for object categorization have demonstrated great achievements in learning, processing and comparing objects. The problem occurs if the database of solved objects is too large and the classification time is being increased proportionally. We present a solution by optimalization of obtained knowledge from learning, using the clustering of a modified neural network. Several methods for modifying a number of clusters to increase the speed or the accuracy of classification are shown. Additionally, the proposed algorithm is able to compute the similarity between clusters of various classes and then create statements about the homogeneity, independence, inferiority and similarity of classes. A series of experiments is shown, some of them also as a part of the multi-agent system, Nao robots and gestures and emotions. The analysis could be useful for students and researchers of the computational intelligence or anyone else who may be considering utlizing neural networks for the object categorization and analysis of obtained knowledge from images or from a video stream.

Autorentext

Peter Smolár,PhD: studied branch of Artificial Intelligence at the Technical University of Kosice, Faculty of Electrical Engineering and Informatics, Department of Cybernetics and Artificial Intelligence.His research includes computational intelligence, particularly neural networks and fuzzy systems, humanoid robotics and object recognition.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659247958
    • Sprache Englisch
    • Größe H220mm x B11mm x T150mm
    • Jahr 2013
    • EAN 9783659247958
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-659-24795-8
    • Titel Intelligent Image Categorization
    • Autor Peter Smolár , Peter Sincák , Mária Vir íková
    • Untertitel Object Categorization with Artmap Neural Networks
    • Gewicht 267g
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 188
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470