Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Intelligent Techniques for Data Modeling Problems
Details
Supervised learning deals with the problem of discovering models from data as relationships between input and output attributes. Two types of models are distinguished: regression models (for continuous output attributes) and classification models (for discrete output attributes). This thesis addresses both regression and classification problems with an emphasis on new applications and on presenting improved evolutionary techniques. Such techniques include Gene Expression Programming (classical and its adaptive version), Genetic Programming, and the hypernetwork model of learning (classical and its evolutionary version). Such methods can be successfully applied to many problems from various domains. This thesis presents applications for symbolic regression for inverse problems, quantum circuit design, modeling of dynamic processes, and forecasting price movement.
Autorentext
Alina BARBULESCU - BSc in Mathematics and Law, MSc in Operators Theory, PhD in Mathematics and Statistical Economics. Research stages: Austria, Italy, Germany, Greece. Associate editor: IIJMC, IJAMS. Publications: 90 articles, 18 books. Reviewer: Geophys Res Letters, Journal of Hydrology, Water SA, Chem Eng Commun, J of Appl Polymers Sci,IJMMS.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783848434794
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B220mm
- Jahr 2012
- EAN 9783848434794
- Format Kartonierter Einband (Kt)
- ISBN 978-3-8484-3479-4
- Titel Intelligent Techniques for Data Modeling Problems
- Autor Elena B utu
- Untertitel Nature inspired meta-heuristics and learning models applied to time series modeling and forecasting
- Herausgeber LAP Lambert Academic Publishing
- Anzahl Seiten 224
- Genre Musik