Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Interpretability of Computational Intelligence-Based Regression Models
Details
The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques. The first part of the book deals with the identification of hinging hyperplane-based regression trees. The next part deals with the validation, visualization and structural reduction of neural networks based on the transformation of the hidden layer of the network into an additive fuzzy rule base system. Finally, based on the analogy of support vector regression and fuzzy models, a three-step model reduction algorithm is proposed to get interpretable fuzzy regression models on the basis of support vector regression.
The authors demonstrate real-world use of the algorithms with examples taken from process engineering, and they support the text with downloadable Matlab code. The book is suitable for researchers, graduate students and practitioners in the areas of computational intelligence and machine learning.
Authors provide related Matlab code for download Valuable for researchers, graduate students and practitioners in computational intelligence and machine learning Real-world examples drawn from process engineering Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Interpretability of Hinging Hyperplanes.- Interpretability of Neural Networks.- Interpretability of Support Vector Machines.- Summary.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319219417
- Herausgeber Springer International Publishing
- Anzahl Seiten 92
- Lesemotiv Verstehen
- Genre Software
- Auflage 1st edition 2015
- Sprache Englisch
- Gewicht 154g
- Untertitel SpringerBriefs in Computer Science
- Autor János Abonyi , Tamás Kenesei
- Größe H235mm x B155mm x T6mm
- Jahr 2015
- EAN 9783319219417
- Format Kartonierter Einband
- ISBN 3319219413
- Veröffentlichung 10.11.2015
- Titel Interpretability of Computational Intelligence-Based Regression Models