Introduction to Graph Neural Networks

CHF 80.35
Auf Lager
SKU
L68MD9L70JN
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool. This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introduced such as graph convolutional networks, graph recurrent networks, graph attention networks, graph residual networks, and several general frameworks. Variants for different graph types and advanced training methods are also included. As for the applications of GNNs, the book categorizes them into structural, non-structural, and other scenarios, and then it introduces several typical models on solving these tasks. Finally, the closing chapters provide GNN open resources and the outlook of several future directions.


Autorentext
Zhiyuan Liu is an associate professor in the Department of Computer Science and Technology, Tsinghua University. He got his B.E. in 2006 and his Ph.D. in 2011 from the Department of Computer Science and Technology, Tsinghua University. His research interests are natural language processing and social computation. He has published over 60 papers in international journals and conferences, including IJCAI, AAAI, ACL, and EMNLP.Jie Zhou is a second-year Masters student of the Department of Computer Science and Technology, Tsinghua University. He got his B.E. from Tsinghua University in 2016. His research interests include graph neural networks and natural language processing.


Inhalt
Preface.- Acknowledgments.- Introduction.- Basics of Math and Graph.- Basics of Neural Networks.- Vanilla Graph Neural Networks.- Graph Convolutional Networks.- Graph Recurrent Networks.- Graph Attention Networks.- Graph Residual Networks.- Variants for Different Graph Types.- Variants for Advanced Training Methods.- General Frameworks.- Applications -- Structural Scenarios.- Applications -- Non-Structural Scenarios.- Applications -- Other Scenarios.- Open Resources.- Conclusion.- Bibliography.- Authors' Biographies.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031004599
    • Genre Information Technology
    • Lesemotiv Verstehen
    • Anzahl Seiten 128
    • Größe H235mm x B191mm x T8mm
    • Jahr 2020
    • EAN 9783031004599
    • Format Kartonierter Einband
    • ISBN 3031004590
    • Veröffentlichung 20.03.2020
    • Titel Introduction to Graph Neural Networks
    • Autor Jie Zhou , Zhiyuan Liu
    • Untertitel Synthesis Lectures on Artificial Intelligence and Machine Learning
    • Gewicht 255g
    • Herausgeber Springer Nature Switzerland
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470