Introduction to Infinite-Equilibriums in Dynamical Systems

CHF 173.15
Auf Lager
SKU
T6I6N4H3KIJ
Stock 1 Verfügbar
Geliefert zwischen Mo., 23.02.2026 und Di., 24.02.2026

Details

This book examines infinite-equilibriums for the switching bifurcations of two 1-dimensional flows in dynamical systems. Quadratic single-linear-bivariate systems are adopted to discuss infinite-equilibriums in dynamical systems. For such quadratic dynamical systems, there are three types of infinite-equilibriums. The inflection-source and sink infinite-equilibriums are for the switching bifurcations of two parabola flows on the two-directions. The parabola-source and sink infinite-equilibriums are for the switching bifurcations of parabola and inflection flows on the two-directions. The inflection upper and lower-saddle infinite-equilibriums are for the switching bifurcation of two inflection flows in two directions. The inflection flows are for appearing bifurcations of two parabola flows on the same direction. Such switching bifurcations for 1-dimensional flow are based on the infinite-equilibriums, which will help one understand global dynamics in nonlinear dynamical systems. This book introduces infinite-equilibrium concepts and such switching bifurcations to nonlinear dynamics.


Introduces the infinite-equilibriums for the switching of two 1-dimensional flows on two directions Explains inflection-source and sink, parabola-source and source, inflection-saddle infinite-equilibriums Develops parabola flows and inflections flows for appearing of two parabola flows.

Autorentext

Albert C. J. Luo, Distinguished Research Professor at Southern Illinois University Edwardsville. He is an internationally recognized scientist on nonlinear dynamics, discontinuous dynamical systems, nonlinear physics, and applied mathematics. His main contributions are on developing a local singularity theory for discontinuous dynamical systems, dynamical systems synchronization, generalized harmonic balance method for analytical solutions of periodic motions to chaos, implicit mapping method for semi-analytical solutions of periodic motions to chaos; a nonlinear dynamical theory for the Hilbert 16 th problem; nonlinear Hamiltonian chaos.


Inhalt

Single-linear-bivariate Linear systems.- Constant and Linear-bivariate Quadratic Systems.- Single-linear-bivariate Linear and Quadratic Systems.- Single-linear-bivariate Quadratic Systems.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031890826
    • Genre Technology Encyclopedias
    • Lesemotiv Verstehen
    • Anzahl Seiten 184
    • Herausgeber Springer Nature Switzerland
    • Größe H241mm x B160mm x T16mm
    • Jahr 2025
    • EAN 9783031890826
    • Format Fester Einband
    • ISBN 3031890825
    • Veröffentlichung 21.06.2025
    • Titel Introduction to Infinite-Equilibriums in Dynamical Systems
    • Autor Albert C. J Luo
    • Gewicht 446g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38