Introduction to Nonlinear Dispersive Equations
Details
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Kortewegde Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Kortewegde Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research.
Thesecond edition of Introduction to Nonlinear Dispersive Equations builds upon the success of the first edition by the addition of updated material on the main topics, an expanded bibliography, and new exercises. Assuming only basic knowledge of complex analysis and integration theory, this book will enable graduate students and researchers to enter this actively developing field.
Includes a nice selection of topics Contains a large section of non-standard exercises Offers accessible presentation of key tools in harmonic and Fourier analysis Includes supplementary material: sn.pub/extras
Autorentext
Felipe Linares is a Researcher at the Instituto Nacional de Matemática Pura e Aplicada (IMPA) in Rio de Janeiro, Brazil.
Gustavo Ponce is a Professor of Mathematics at the University of California in Santa Barbara.
Inhalt
- The Fourier Transform.- 2. Interpolation of Operators.- 3. Sobolev Spaces and Pseudo-Differential Operators.- 4. The Linear Schrodinger Equation.- 5. The Non-Linear Schrodinger Equation.- 6. Asymptotic Behavior for NLS Equation.- 7. Korteweg-de Vries Equation.- 8. Asymptotic Behavior for k-gKdV Equations.- 9. Other Nonlinear Dispersive Models.- 10. General Quasilinear Schrodinger Equation.- Proof of Theorem 2.8.- Proof of Lemma 4.2.- References.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781493921805
- Sprache Englisch
- Auflage 2nd edition 2015
- Größe H235mm x B155mm x T18mm
- Jahr 2014
- EAN 9781493921805
- Format Kartonierter Einband
- ISBN 1493921800
- Veröffentlichung 15.12.2014
- Titel Introduction to Nonlinear Dispersive Equations
- Autor Gustavo Ponce , Felipe Linares
- Untertitel Universitext
- Gewicht 482g
- Herausgeber Springer New York
- Anzahl Seiten 316
- Lesemotiv Verstehen
- Genre Mathematik