Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Introduction to Nonparametric Estimation
Details
Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
This book will be a valuable reference for researchers in the eare of nonparametrics.
Concise and self-contained treatment of the theory Thorough analysis of optimality and adaptivity issues Detailed account on minimax lower bounds
Klappentext
Methods of nonparametric estimation are located at the core of modern statistical science. The aim of this book is to give a short but mathematically self-contained introduction to the theory of nonparametric estimation. The emphasis is on the construction of optimal estimators; therefore the concepts of minimax optimality and adaptivity, as well as the oracle approach, occupy the central place in the book.
This is a concise text developed from lecture notes and ready to be used for a course on the graduate level. The main idea is to introduce the fundamental concepts of the theory while maintaining the exposition suitable for a first approach in the field. Therefore, the results are not always given in the most general form but rather under assumptions that lead to shorter or more elegant proofs.
The book has three chapters. Chapter 1 presents basic nonparametric regression and density estimators and analyzes their properties. Chapter 2 is devoted to a detailed treatment of minimax lower bounds. Chapter 3 develops more advanced topics: Pinsker's theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.
Inhalt
Nonparametric estimators.- Lower bounds on the minimax risk.- Asymptotic efficiency and adaptation.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441927095
- Sprache Englisch
- Auflage Softcover reprint of hardcover 1st edition 2009
- Größe H235mm x B155mm x T13mm
- Jahr 2010
- EAN 9781441927095
- Format Kartonierter Einband
- ISBN 1441927093
- Veröffentlichung 29.11.2010
- Titel Introduction to Nonparametric Estimation
- Autor Alexandre B. Tsybakov
- Untertitel Springer Series in Statistics
- Gewicht 353g
- Herausgeber Springer New York
- Anzahl Seiten 228
- Lesemotiv Verstehen
- Genre Mathematik