Inverse Problems and Nonlinear Evolution Equations

CHF 210.15
Auf Lager
SKU
GNO03EEA4CK
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role.

The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when BäcklundDarboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way.

The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas.

The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.


Autorentext

Alexander L. Sakhnovich, University of Vienna, Austria; Lev A. Sakhnovich, Milford, Connecticut, USA; Inna Ya. Roitberg, Universität Leipzig, Germany.


Klappentext
This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role. The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when Bäcklund?Darboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way. The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas. The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.

Zusammenfassung

"The book presents a clear and helpful introduction into the present state of affairs and paves the way to independent research for advanced students and young researchers." Zentralblatt für Mathematik

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783110258608
    • Sprache Englisch
    • Auflage 1. Auflage
    • Größe H246mm x B175mm x T31mm
    • Jahr 2013
    • EAN 9783110258608
    • Format Fester Einband
    • ISBN 3110258609
    • Veröffentlichung 17.07.2013
    • Titel Inverse Problems and Nonlinear Evolution Equations
    • Autor Alexander L. Sakhnovich , Inna Ya. Roitberg , Lev A. Sakhnovich
    • Untertitel Solutions, Darboux Matrices and Weyl-Titchmarsh Functions
    • Gewicht 856g
    • Herausgeber De Gruyter
    • Anzahl Seiten 356
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38