Investment Strategies Optimization based on a SAX-GA Methodology
Details
This book presents a new computational finance approach combining a Symbolic Aggregate approximation (SAX) technique with an optimization kernel based on genetic algorithms (GA). While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used in order to identify the most relevant patterns and generate investment rules. The proposed approach considers several different chromosomes structures in order to achieve better results on the trading platform The methodology presented in this book has great potential on investment markets.
Presents a new computational finance approach combining SAX and GA Shows soft computing and computational intelligence as solutions for financial markets Case studies presented help identifying the investment strategy to apply in different situations Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Market Analysis Background and Related Work.- SAX-GA Approach.- Results.- Conclusions and Future Work.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642331091
- Auflage 2013
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H235mm x B155mm x T6mm
- Jahr 2012
- EAN 9783642331091
- Format Kartonierter Einband
- ISBN 3642331092
- Veröffentlichung 28.09.2012
- Titel Investment Strategies Optimization based on a SAX-GA Methodology
- Autor António M. L. Canelas , Nuno C. G. Horta , Rui F. M. F. Neves
- Untertitel SpringerBriefs in Applied Sciences and Technology - SpringerBriefs in Computatio
- Gewicht 160g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 96