Isotropic Manifold

CHF 56.55
Auf Lager
SKU
4USSLJRBUMF
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, an isotropic manifold is a manifold in which the geometry doesn''t depend on directions. An simple example is the surface of a sphere. A homogeneous space is a similar concept. A homogeneous space can be non-isotropic (for example, a flat torus), in the sense that an invariant metric tensor on a homogeneous space may not be isotropic. In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts continuously by symmetry in a transitive way. A special case of this is when the topological group, G, in question is the homeomorphism group of the space, X. In this case X is homogeneous if intuitively X looks locally the same everywhere. Some authors insist that the action of G be effective (i.e. faithful), although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131242663
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131242663
    • Format Fachbuch
    • Titel Isotropic Manifold
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 132
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38