Kalman Filtering for Uncertain Noise Covariances

CHF 59.95
Auf Lager
SKU
DEQ87508FB0
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The aircraft health monitoring has been a challenging task for over decades. In turbofan jet engines, all the parameters which describe the health of the engine cannot be measured explicitly. One possible solution to this problem is Kalman filter. The traditional Kalman filter is optimal as long as the modeling of the plant is accurate. The turbofan jet engine being highly non-linear makes the task difficult. This study shows a way of linearizing the jet engine model so that theoretically proven estimation techniques can be applied to this problem. This study presents the application of Kalman filter to health parameter monitoring of the gas turbine engine. It is shown that the standard Kalman filter will not be robust enough if there are uncertainties in the modeling of the plant. A new filter is developed in this study which addresses the uncertainties in the process noise and measurement noise covariances without assuming any bounds on them. A hybrid gradient descent algorithm is proposed to tune the new filter gain. This filter is then implemented for the health parameter estimation. The results show significant decrease in the estimation error covariance.

Autorentext

Christopher is a University Lecturer and also a Consultant to Organizations both locally and internationally. His research interests are in the areas of: Telecommunications, Ionospheric and Space Physics, Theoretical Physics, Mathematical Modeling, Nanoparticles, Neural Networks, Signal Processing, Hydrodynamics and Nuclear Structure Properties.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786207484416
    • Genre Electrical Engineering
    • Sprache Englisch
    • Anzahl Seiten 68
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T5mm
    • Jahr 2024
    • EAN 9786207484416
    • Format Kartonierter Einband
    • ISBN 620748441X
    • Veröffentlichung 15.04.2024
    • Titel Kalman Filtering for Uncertain Noise Covariances
    • Autor Christopher Oluwatobi Adeogun
    • Untertitel Investigation of the Air-gap Signal in Kalman Filter Under Relative Acceleration
    • Gewicht 119g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470