Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Languages and Compilers for Parallel Computing
Details
This book constitutes the thoroughly refereed post-conference proceedings of the 33rd International Workshop on Languages and Compilers for Parallel Computing, LCPC 2020, held in Stony Brook, NY, USA, in October 2020. Due to COVID-19 pandemic the conference was held virtually. The 15 revised full papers were carefully reviewed and selected from 19 submissions. The contributions were organized in topical sections named as follows: Code and Data Transformations; OpenMP and Fortran; Domain Specific Compilation; Machine Language and Quantum Computing; Performance Analysis; Code Generation.
Inhalt
Code and Data Transformations An Affine Scheduling Framework for Integrating Data Layout and Loop Transformations.- Guiding Code Optimizations with Deep Learning-Based Code Matching.- Expanding Opportunities for Array Privatization in Sparse Computations.- OpenMP and Fortran Concurrent Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads.- Using Hardware Transactional Memory to Implement Speculative Privatization in OpenMP.- Improving Fortran Performance Portability.- Domain Specific Compilation COMET: A Domain-Specic Compilation of High-Performance Computational Chemistry.- G-Code Re-compilation and Optimization for Faster 3D Printing.- Li Machine Language and Quantum Computing Optimized Code Generation for Deep Neural Networks.- Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware.- A Quantum-Inspired Model For Bit-Serial SIMD-Parallel Computation.- Performance Analysis Enhancing the Top-Down Microarchitectural Analysis Method Using Purchasing Power Parity Theory.- Code Generation Cain: Automatic Code Generation for Simultaneous Convolutional Kernels on Focal-plane Sensor-processors.- Reordering Under the ECMAScript Memory Consistency Model.- Verication of Vectorization of Signal Transforms.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030959524
- Anzahl Seiten 244
- Lesemotiv Verstehen
- Genre Programming Languages
- Auflage 1st edition 2022
- Editor José Moreira, Barbara Chapman
- Herausgeber Springer International Publishing
- Gewicht 376g
- Untertitel 33rd International Workshop, LCPC 2020, Virtual Event, October 14-16, 2020, Revised Selected Papers
- Größe H235mm x B155mm x T14mm
- Jahr 2022
- EAN 9783030959524
- Format Kartonierter Einband
- ISBN 303095952X
- Veröffentlichung 16.02.2022
- Titel Languages and Compilers for Parallel Computing
- Sprache Englisch