Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Laplacian Growth on Branched Riemann Surfaces
Details
This book studies solutions of the PolubarinovaGalin and LöwnerKufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps.
This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.
Explores unsolved problems and new directions related to domain evolutions on Riemann surfaces Presents potentially fruitful ideas around the ill-posed suction problem Gives elementary, but intriguing, examples involving only polynomials and rational functions
Klappentext
This book studies solutions of the PolubarinoväGalin and Löwner Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps. This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.
Zusammenfassung
"This interesting book is devoted to the Laplacian growth on Riemann surfaces. ... This book is a valuable contribution to the modern theory of Laplacian growth. It contains many useful and interesting results, together with a rigorous analysis of all treated problems." (Mirela Kohr, zbMATH 1526.30032, 2024)
Inhalt
Introduction.- The Polubarinova-Galin and Löwner-Kufarev equations.- Weak solutions and balayage.- Weak and strong solutions on Riemann surfaces.- Global simply connected weak solutions.- General structure of rational solutions.- Examples.- Moment coordinates and the string equation.- Hamiltonian descriptions of general Laplacian evolutions.- The string equation for some rational functions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030698621
- Sprache Englisch
- Auflage 1st edition 2021
- Größe H235mm x B155mm x T10mm
- Jahr 2021
- EAN 9783030698621
- Format Kartonierter Einband
- ISBN 3030698629
- Veröffentlichung 23.03.2021
- Titel Laplacian Growth on Branched Riemann Surfaces
- Autor Yu-Lin Lin , Björn Gustafsson
- Untertitel Lecture Notes in Mathematics 2287
- Gewicht 265g
- Herausgeber Springer International Publishing
- Anzahl Seiten 168
- Lesemotiv Verstehen
- Genre Mathematik