Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Large Scale Linear Coding for Image Classification
Details
Image classification, including object recognition and scene classification, remains to be a major challenge to the computer vision community. As machine can be able to extract information from an image and classify it in order to solve some tasks. Recently SVMs using Spatial Pyramid Matching (SPM) kernel have been highly successful in image classification. Despite its popularity, this technique cannot handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing Vector Quantization to Sparse Coding followed by multi-scale Spatial Max Pooling, and also propose a large scale linear classifier based on Scale Invariant Feature Transform (SIFT) and Sparse Codes. This new adapted algorithm remarkably can handle thousands of training images and classify them into different categories.
Autorentext
Mostafa Ibrahim elkhalil mostafa labib , Nationality: Egyptiangraduated from Faculty of computing and information Technology, Computer Science,2006Diploma in E-Business from ITI,2007Master in Computer Science from AASTMT,2013Current job is Multimedia Developer in IT Department,CULTNAt,Bibliotheca Alexandrina.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 233g
- Autor Mostafa Labib , Mohamed Fakhr , Mustafa Ali
- Titel Large Scale Linear Coding for Image Classification
- Veröffentlichung 19.06.2014
- ISBN 365955135X
- Format Kartonierter Einband
- EAN 9783659551352
- Jahr 2014
- Größe H220mm x B150mm x T9mm
- Anzahl Seiten 144
- GTIN 09783659551352