Large-Scale Visual Geo-Localization

CHF 150.95
Auf Lager
SKU
RU15V0UQVKV
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This timely and authoritative volume explores the bidirectional relationship between images and locations. The text presents a comprehensive review of the state of the art in large-scale visual geo-localization, and discusses the emerging trends in this area. Valuable insights are supplied by a pre-eminent selection of experts in the field, into a varied range of real-world applications of geo-localization. Topics and features: discusses the latest methods to exploit internet-scale image databases for devising geographically rich features and geo-localizing query images at different scales; investigates geo-localization techniques that are built upon high-level and semantic cues; describes methods that perform precise localization by geometrically aligning the query image against a 3D model; reviews techniques that accomplish image understanding assisted by the geo-location, as well as several approaches for geo-localization under practical, real-world settings.

Presents in-depth insights from academic and industry leaders in the field Describes analyses on real-world datasets from the military, government and academia Provides the first extensive review of this emerging field, including discussion of state-of-the-art and potential future developments Includes supplementary material: sn.pub/extras

Autorentext

Dr. Amir R. Zamir is a postdoctoral researcher at the Computer Science Department of Stanford University, CA, USA.

Dr. Asaad Hakeem is a Principal Research Scientist in the Machine Learning Division at Decisive Analytics Corporation, Arlington, VA, USA.

Dr. Luc Van Gool is a Full Professor and Head of the Computer Vision Lab at ETH Zurich, Switzerland, and the VISICS Computer Vision at KU Leuven, Belgium. His other publications include the Springer title Detection and Identification of Rare Audio-visual Cues.

Dr. Mubarak Shah is Agere Chair Professor and Director of the Center for Research in Computer Vision at the University of Central Florida, Orlando, FL, USA. He is the Series Editor of Springer's International Series in Video Computing, and he served as an Editor-in-Chief of the Springer journal Machine Vision and Applications from 2004 to 2015.

Dr. Richard Szeliski is the Director and a founding member of the Computational Photography applied research group at Facebook, Seattle, WA, USA. He is also the author of the best-selling Springer textbook Computer Vision Algorithms and Applications.



Inhalt
Introduction to Large Scale Visual Geo-Localization.- Part I: Data-Driven Geo-Localization.- Discovering Mid-Level Visual Connections in Space and Time.- Where the Photos Were Taken: Location Prediction by Learning from Flickr Photos.- Cross-View Image Geo-Localization.- Ultra-Wide Baseline Facade Matching for Geo-Localization.- Part II: Semantic Reasoning-Based Geo-Localization.- Semantically Guided Geo-Localization and Modeling in Urban Environments.- Recognizing Landmarks in Large-Scale Social Image Collections.- Part III: Geometric Matching-Based Geo-Localization.- Worldwide Pose Estimation Using 3D Point Clouds.- Exploiting Spatial and Co-Visibility Relations for Image-Based Localization.- 3D Point Cloud Reduction Using Mixed-Integer Quadratic Programming.- Image-Based Large-Scale Geo-Localization in Mountainous Regions.- Adaptive Rendering for Large-Scale Skyline Characterization and Matching.- User-Aided Geo-Localization of Untagged Desert Imagery.- Visual Geo-Localization of Non-Photographic Depictions via 2D-3D Alignment.- Part IV: Real-World Applications.- A Memory Efficient Discriminative Approach for Location-Aided Recognition.- A Real-World System for Image/Video Geo-Localization.- Photo Recall: Using the Internet to Label Your Photos.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319798400
    • Auflage Softcover reprint of the original 1st edition 2016
    • Editor Amir R. Zamir, Asaad Hakeem, Richard Szeliski, Mubarak Shah, Luc Van Gool
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T19mm
    • Jahr 2018
    • EAN 9783319798400
    • Format Kartonierter Einband
    • ISBN 3319798405
    • Veröffentlichung 31.05.2018
    • Titel Large-Scale Visual Geo-Localization
    • Untertitel Advances in Computer Vision and Pattern Recognition
    • Gewicht 618g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 364
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470