Learning Causal Networks from Gene Expression Data

CHF 83.95
Auf Lager
SKU
8T2QANEEOQH
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 29.10.2025 und Do., 30.10.2025

Details

In this work we present a new model for identifying dependencies within a gene regulatory cycle. The model incorporates both probabilistic and temporal aspects, but is kept deliberately simple to make it amenable for learning from the gene expression data of microarray experiments. A key simplifying feature in our model is the use of a compression function for collapsing multiple causes of gene expression into a single cause. This allows us to introduce a learning algorithm which avoids the over-fitting tendencies of models with many parameters. We have validated the learning algorithm on simulated data, and carried out experiments on real microarray data. In doing so, we have discovered novel, yet plausible, biological relationships.

Autorentext

Nasir Ahsan is currently a PhD student at the Australian center for Field Robotics working on adaptive ocean surveying. Prior to that he was a lecturer at NUST where he led a funded project on an Autonomous Air Vehicle. He received his MSc from UNSW in 2006 and his BSc from KFUPM in 2004.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639197792
    • Sprache Englisch
    • Größe H9mm x B220mm x T150mm
    • Jahr 2009
    • EAN 9783639197792
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-19779-2
    • Titel Learning Causal Networks from Gene Expression Data
    • Autor Nasir Ahsan
    • Untertitel A Probabilistic Time Series Model for Gene Regulatory Relationships and Learning the Model from Gene Expression Data
    • Gewicht 245g
    • Herausgeber VDM Verlag Dr. Müller e.K.
    • Anzahl Seiten 172
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.