Learning Representation for Multi-View Data Analysis

CHF 177.75
Auf Lager
SKU
R7SOTC09NNM
Stock 1 Verfügbar
Geliefert zwischen Di., 11.11.2025 und Mi., 12.11.2025

Details

This book equips readers to handle complex multi-view data representation, centered around several major visual applications, sharing many tips and insights through a unified learning framework. This framework is able to model most existing multi-view learning and domain adaptation, enriching readers' understanding from their similarity, and differences based on data organization and problem settings, as well as the research goal. A comprehensive review exhaustively provides the key recent research on multi-view data analysis, i.e., multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. More practical challenges in multi-view data analysis are discussed including incomplete, unbalanced and large-scale multi-view learning. Learning Representation for Multi-View Data Analysis covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Broadens your understanding of multi-view data analysis Explains how to design an effective multi-view data representation model Reinforces multi-view representation principles with real-world practices

Inhalt
Introduction.- Multi-view Clustering with Complete Information.- Multi-view Clustering with Partial Information.- Multi-view Outlier Detection.- Multi-view Transformation Learning.- Zero-Shot Learning.- Missing Modality Transfer Learning.- Deep Domain Adaptation.- Deep Domain Generalization.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030007331
    • Sprache Englisch
    • Auflage 1st edition 2019
    • Größe H241mm x B160mm x T21mm
    • Jahr 2018
    • EAN 9783030007331
    • Format Fester Einband
    • ISBN 3030007332
    • Veröffentlichung 17.12.2018
    • Titel Learning Representation for Multi-View Data Analysis
    • Autor Zhengming Ding , Yun Fu , Handong Zhao
    • Untertitel Models and Applications
    • Gewicht 588g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 280
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470