Learning Structure and Schemas from Documents

CHF 184.75
Auf Lager
SKU
7PM7FCS4HGM
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book covers the latest advances in structure inference in heterogeneous collections of documents and data, offering a comprehensive view of the state of the art, and identifying challenges and opportunities for further research agenda and developments.

The rapidly growing volume of available digital documents of various formats and the possibility to access these through Internet-based technologies, have led to the necessity to develop solid methods to properly organize and structure documents in large digital libraries and repositories. Due to the extremely large volumes of documents and to their unstructured form, most of the research efforts in this direction are dedicated to automatically infer structure and schemas that can help to better organize huge collections of documents and data.

This book covers the latest advances in structure inference in heterogeneous collections of documents and data. The book brings a comprehensive view of the state-of-the-art in the area, presents some lessons learned and identifies new research issues, challenges and opportunities for further research agenda and developments. The selected chapters cover a broad range of research issues, from theoretical approaches to case studies and best practices in the field.

Researcher, software developers, practitioners and students interested in the field of learning structure and schemas from documents will find the comprehensive coverage of this book useful for their research, academic, development and practice activity.


Presents State-Of-The-Art Methods for Structure Learning and Schema Inference Case Studies and Best Practices from Real Large Scale Digital Libraries, Repositories and Corpora Written by Leading Experts in the Field

Inhalt
From the content: Learning Structure and Schemas from Heterogeneous Domains in Networked Systems Surveyed.- Handling Hierarchically Structured Resources Addressing Interoperability Issues in Digital Libraries.- Administrative Document Analysis and Structure.- Automatic Document Layout Analysis through Relational Machine Learning.- Dataspaces: where structure and schema meet.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783662506714
    • Genre Technology Encyclopedias
    • Auflage Softcover reprint of the original 1st edition 2011
    • Editor Fatos Xhafa, Marenglen Biba
    • Lesemotiv Verstehen
    • Anzahl Seiten 460
    • Herausgeber Springer Berlin Heidelberg
    • Größe H235mm x B155mm x T25mm
    • Jahr 2016
    • EAN 9783662506714
    • Format Kartonierter Einband
    • ISBN 3662506718
    • Veröffentlichung 23.08.2016
    • Titel Learning Structure and Schemas from Documents
    • Untertitel Studies in Computational Intelligence 375
    • Gewicht 692g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470