Learning Under Distribution Mismatch

CHF 95.55
Auf Lager
SKU
7UCMRPEDV1C
Stock 1 Verfügbar
Geliefert zwischen Mo., 24.11.2025 und Di., 25.11.2025

Details

Independent and identically and distribution (i.i.d) assumption is a basis for classical learning methods, where the test data instances follow the same probability distribution as the training instances. However, the data evolve over time and change from one domain to another, thus the training data may be outdated and not enough representatives for the distribution of the test data. Transfer learning and domain adaptation, which is a general subfield of machine learning, aims to identify, extract and transfer the relevant useful knowledge from one or more source domain/task for learning in a target domain/task. This allows the domains, tasks, and distributions of training and test data to be different. There are three main issues on transfer learning: what to transfer; how to transfer; when to transfer. This book focuses on domain adaptation methods, aiming to develop effective solutions for real-world problems, especially biomedical healthcare systems. It contains two major parts: 1. To develop a new method for domain adaptation, in order to improve the efficiency, performance, and usability of real-world 2. To develop and analyze a general framework for automatic sleep staging.

Autorentext

Dr Khalighi holds an M.Sc. in Artificial Intelligence and Robotics from Sharif University of Technology, Iran, 2005 and a Ph.D from University of Coimbra, Portugal, 2016. The auhtor has been involved with projects in the area of machine learning, statistical pattern recognition, automatic sleep staging, and brain-computer interfaces.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786202059503
    • Genre Information Technology
    • Anzahl Seiten 320
    • Größe H220mm x B150mm x T20mm
    • Jahr 2017
    • EAN 9786202059503
    • Format Kartonierter Einband
    • ISBN 6202059508
    • Veröffentlichung 09.11.2017
    • Titel Learning Under Distribution Mismatch
    • Autor Sirvan Khalighi
    • Gewicht 495g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470