Lectures on the Nearest Neighbor Method

CHF 188.80
Auf Lager
SKU
T8LRHHGK7OA
Stock 1 Verfügbar
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026

Details

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.

Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).


Presents a rigorous overview of nearest neighbor methods Many different components covered: statistical, probabilistic, combinatorial, and geometric ideas Extensive appendix material provided

Inhalt
Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k-nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k-nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP-consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319797823
    • Sprache Englisch
    • Auflage Softcover reprint of the original 1st edition 2015
    • Größe H235mm x B155mm x T17mm
    • Jahr 2019
    • EAN 9783319797823
    • Format Kartonierter Einband
    • ISBN 3319797824
    • Veröffentlichung 21.03.2019
    • Titel Lectures on the Nearest Neighbor Method
    • Autor Luc Devroye , Gérard Biau
    • Untertitel Springer Series in the Data Sciences
    • Gewicht 458g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 300
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38