Lefschetz Theorem on (1,1)- Classes

CHF 42.60
Auf Lager
SKU
JH1L27H7CTL
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! In algebraic geometry, a branch of mathematics, the Lefschetz theorem on (1,1)-classes, named after Solomon Lefschetz, is a classical statement relating divisors on a compact Kähler manifold to classes in its integral cohomology. It is the only case of the Hodge conjecture which has been proved for all Kähler manifolds.Let X be a compact Kähler manifold. There is a cycle class map that takes a divisor class to a cohomology class. In this case, it is the first Chern class c1 from linear equivalence classes of divisors to H2(X, Z). By Hodge theory, the de Rham cohomology group H2(X, C) decomposes as a direct sum H0,2(X) H1,1(X) H2,0(X), and it can be proved that the image of the cycle class map lies in H1,1(X). The theorem says that the map to H2(X, Z) H1,1(X) is surjective.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131201639
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131201639
    • Format Fachbuch
    • Titel Lefschetz Theorem on (1,1)- Classes
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38