Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Lie Algebras and Algebraic Groups
Details
The theory of Lie algebras and algebraic groups has been an area of active research for the last 50 years. This book assembles in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included and some recent results are discussed in the final chapters. All the prerequisites on commutative algebra and algebraic geometry are included.
Devoted to the theory of Lie algebras and algebraic groups Includes a considerable amount of commutative algebra and algebraic geometry so as to make the book as self-contained as possible Includes all the material required (basic and advanced) for studying the theory of Lie algebras and algebraic groups Includes detailed proofs Moreover, also includes some new and unpublished results
Inhalt
Results on topological spaces.- Rings and modules.- Integral extensions.- Factorial rings.- Field extensions.- Finitely generated algebras.- Gradings and filtrations.- Inductive limits.- Sheaves of functions.- Jordan decomposition and some basic results on groups.- Algebraic sets.- Prevarieties and varieties.- Projective varieties.- Dimension.- Morphisms and dimension.- Tangent spaces.- Normal varieties.- Root systems.- Lie algebras.- Semisimple and reductive Lie algebras.- Algebraic groups.- Affine algebraic groups.- Lie algebra of an algebraic group.- Correspondence between groups and Lie algebras.- Homogeneous spaces and quotients.- Solvable groups.- Reductive groups.- Borel subgroups, parabolic subgroups, Cartan subgroups.- Cartan subalgebras, Borel subalgebras and parabolic subalgebras.- Representations of semisimple Lie algebras.- Symmetric invariants.- S-triples.- Polarizations.- Results on orbits.- Centralizers.- ?-root systems.- Symmetric Lie algebras.- Semisimple symmetric Lie algebras.- Sheets of Lie algebras.- Index and linear forms.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783540241706
- Sprache Englisch
- Auflage 1. A. 2005
- Größe H235mm x B39mm x T155mm
- Jahr 2005
- EAN 9783540241706
- Format Fester Einband
- ISBN 978-3-540-24170-6
- Titel Lie Algebras and Algebraic Groups
- Autor Patrice Tauvel , Rupert W. T. Yu
- Untertitel Springer Monographs in Mathematics
- Gewicht 1213g
- Herausgeber Springer-Verlag GmbH
- Anzahl Seiten 656
- Lesemotiv Verstehen
- Genre Mathematik