Linguistic Structure Prediction

CHF 71.35
Auf Lager
SKU
8492TL2UI2B
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference

Autorentext

Noah A. Smith is an assistant professor in the Language Technologies Institute and Machine Learning Department at the School of Computer Science at Carnegie Mellon University. He received his Ph.D. in Computer Science from Johns Hopkins University (2006) and his B.S. in Computer Science and B.A. in Linguistics from the University of Maryland (2001). He was awarded a Hertz Foundation fellowship (2001-2006), served on the DARPA Computer Science Study Panel (2007) and the editorial board of the journal Computational Linguistics, and received a best paper award from the Association for Computational Linguistics (2009) and an NSF CAREER grant (2011). His research interests include statistical natural language processing, especially unsupervised methods, machine learning for structured data, and applications of natural language processing.


Inhalt
Representations and Linguistic Data.- Decoding: Making Predictions.- Learning Structure from Annotated Data.- Learning Structure from Incomplete Data.- Beyond Decoding: Inference.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031010156
    • Genre Information Technology
    • Lesemotiv Verstehen
    • Anzahl Seiten 272
    • Größe H235mm x B191mm x T15mm
    • Jahr 2011
    • EAN 9783031010156
    • Format Kartonierter Einband
    • ISBN 3031010159
    • Veröffentlichung 01.06.2011
    • Titel Linguistic Structure Prediction
    • Autor Noah A. Smith
    • Untertitel Synthesis Lectures on Human Language Technologies
    • Gewicht 514g
    • Herausgeber Springer International Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38