Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Link Prediction in Social Networks
Details
This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.
accessible explanation of the role of power law degree distribution in link Describes a range of link prediction algorithms in an easy-to-understand manner Discusses the implementation of both the popular link prediction algorithms and the proposed link prediction algorithms in C++ Includes supplementary material: sn.pub/extras
Autorentext
Dr. Virinchi Srinivas is a Graduate Research Assistant in the Department of Computer Science at the University of Maryland, College Park, MD, USA. Dr. Pabitra Mitra is an Associate Professor in the Department of Computer Science and Engineering at the Indian Institute of Technology, Kharagpur, India.
Inhalt
Introduction.- Link Prediction Using Degree Thresholding.- Locally Adaptive Link Prediction.- Two Phase Framework for Link Prediction.- Applications of Link Prediction.- Conclusion.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319289212
- Genre Information Technology
- Auflage 1st ed. 2016
- Lesemotiv Verstehen
- Anzahl Seiten 67
- Größe H235mm x B165mm x T3mm
- Jahr 2016
- EAN 9783319289212
- Format Kartonierter Einband
- ISBN 978-3-319-28921-2
- Titel Link Prediction in Social Networks
- Autor Virinchi Srinivas , Pabitra Mitra
- Untertitel Role of Power Law Distribution
- Gewicht 137g
- Herausgeber Springer
- Sprache Englisch