Link Prediction in Social Networks

CHF 72.05
Auf Lager
SKU
QGRU5QOM1UO
Stock 1 Verfügbar
Geliefert zwischen Mi., 14.01.2026 und Do., 15.01.2026

Details

This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.



accessible explanation of the role of power law degree distribution in link Describes a range of link prediction algorithms in an easy-to-understand manner Discusses the implementation of both the popular link prediction algorithms and the proposed link prediction algorithms in C++ Includes supplementary material: sn.pub/extras

Autorentext

Dr. Virinchi Srinivas is a Graduate Research Assistant in the Department of Computer Science at the University of Maryland, College Park, MD, USA. Dr. Pabitra Mitra is an Associate Professor in the Department of Computer Science and Engineering at the Indian Institute of Technology, Kharagpur, India.


Inhalt

Introduction.- Link Prediction Using Degree Thresholding.- Locally Adaptive Link Prediction.- Two Phase Framework for Link Prediction.- Applications of Link Prediction.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319289212
    • Genre Information Technology
    • Auflage 1st ed. 2016
    • Lesemotiv Verstehen
    • Anzahl Seiten 67
    • Größe H235mm x B165mm x T3mm
    • Jahr 2016
    • EAN 9783319289212
    • Format Kartonierter Einband
    • ISBN 978-3-319-28921-2
    • Titel Link Prediction in Social Networks
    • Autor Virinchi Srinivas , Pabitra Mitra
    • Untertitel Role of Power Law Distribution
    • Gewicht 137g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470