Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Local Dependence Measures, Properties and Applications
Details
Dependence relation between random variables is one of the most widely studied topics in probability theory and statistics. Unless specific assumptions are made about the dependence, no meaningful statistical model can be constructed. Dependence structure between random variables is generally complex and the single scalar dependence measures cannot be adequate to explain the natural association between them. With this motivation, a new local dependence function characterizing dependence structure between two random variables in an epsilon-neighbourhood of particular point from the domain of underlying bivariate distribution is introduced and its properties are investigated. Examples for the local dependence function of some bivariate distributions are provided. Also, local numerical characteristics of random variables are introduced and their properties are investigated. Local characteristics of some distributions are also examined. The text mainly provides a detailed overview of the dependence concept.In addition to explaining the theoretical concept of dependence, it also includes practical discussions.
Autorentext
Burcu H. Üçer, Ph.D.: Department of Statistics, Dokuz Eylul University, Izmir. smihan Bayramölu (Bairamov), Ph.D. (Professor): Department of Mathematics, Izmir University of Economics, Izmir.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838350769
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9783838350769
- Format Kartonierter Einband
- ISBN 3838350766
- Veröffentlichung 11.03.2010
- Titel Local Dependence Measures, Properties and Applications
- Autor Burcu Üçer , Smihan Bayramo lu
- Untertitel Concepts and Methods
- Gewicht 179g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 108
- Genre Mathematik