Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Long-Range Dependence of Markov Chains
Details
Long-range dependence in discrete and continuous time Markov chains over a countable state space is defined via embedded renewal processes brought about by visits to a fixed state. In the discrete time chain, solidarity properties are obtained and long-range dependence of functionals are examined. On the other hand, the study of LRD of continuous time chains is defined via the number of visits in a given time interval. Long-range dependence of Markov chains over a non-countable state space is also carried out through positive Harris chains. Examples of these chains are presented, with particular attention given to long-range dependent Markov chains in single-server queues, namely, the waiting times of GI/G/1 queues and queue lengths at departure epochs in M/G/1 queues. The presence of long-range dependence in these processes is dependent on the moment index of the lifetime distribution of the service times. These processes of waiting times and queue sizes are also examined in a range of M/P/2 queues via simulation (here, $P$ denotes a Pareto distribution).
Autorentext
The author is an Associate Professor at De La Salle University Manila, Philippines. She obtained the degree of Doctor of Philosophy in Mathematical Sciences at the Australian National University. She was an instructor at the University of the Philippines Diliman while working on her Master's Degree in Applied Mathematics.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783843394956
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2011
- EAN 9783843394956
- Format Kartonierter Einband
- ISBN 3843394954
- Veröffentlichung 01.02.2011
- Titel Long-Range Dependence of Markov Chains
- Autor Kristine Joy Carpio
- Untertitel Theory and Examples
- Gewicht 191g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 116
- Genre Mathematik