Low-Power Smart Imagers for Vision-Enabled Sensor Networks

CHF 155.95
Auf Lager
SKU
GKH3N8M4IJS
Stock 1 Verfügbar
Geliefert zwischen Di., 30.12.2025 und Mi., 31.12.2025

Details

Here is a systematic approach to developing vision system architectures that employ sensory-processing concurrency and parallel processing. It facilitates appropriate responses to a range of autonomy challenges posed by safety and surveillance applications.


This book presents a comprehensive, systematic approach to the development of vision system architectures that employ sensory-processing concurrency and parallel processing to meet the autonomy challenges posed by a variety of safety and surveillance applications. Coverage includes a thorough analysis of resistive diffusion networks embedded within an image sensor array. This analysis supports a systematic approach to the design of spatial image filters and their implementation as vision chips in CMOS technology. The book also addresses system-level considerations pertaining to the embedding of these vision chips into vision-enabled wireless sensor networks. Describes a system-level approach for designing of vision devices and embedding them into vision-enabled, wireless sensor networks; Surveys state-of-the-art, vision-enabled WSN nodes; Includes details of specifications and challenges of vision-enabled WSNs; Explains architectures for low-energy CMOS vision chips with embedded, programmable spatial filtering capabilities; Includes considerations pertaining to the integration of vision chips into off-the-shelf WSN platforms.

Describes a system-level approach for designing of vision devices and embedding them into vision-enabled, wireless sensor networks Surveys state-of-the-art, vision-enabled WSN nodes Includes details of specifications and challenges of vision-enabled WSNs Explains architectures for low-energy CMOS vision chips with embedded, programmable spatial filtering capabilities Includes considerations pertaining to the integration of vision chips into off-the-shelf WSN platforms Includes supplementary material: sn.pub/extras

Inhalt
Introduction.- Vision-enabled WSN Nodes: State of the Art.- Processing Primitives for Image Simplification.- VLSI Implementation of Linear Diffusion.- FLIP-Q: A QCIF Resolution Focal-plane Array for Low-power Image Processing.- Wi-FLIP: A Low-power Vision-enabled WSN Node.- Case Study: Early Detection of Forest Fires.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781461423911
    • Genre Elektrotechnik
    • Auflage 2012
    • Sprache Englisch
    • Lesemotiv Verstehen
    • Anzahl Seiten 180
    • Größe H241mm x B160mm x T13mm
    • Jahr 2012
    • EAN 9781461423911
    • Format Fester Einband
    • ISBN 1461423910
    • Veröffentlichung 07.04.2012
    • Titel Low-Power Smart Imagers for Vision-Enabled Sensor Networks
    • Autor Jorge Fernández-Berni , Ángel Rodríguez-Vázquez , Ricardo Carmona-Galán
    • Gewicht 442g
    • Herausgeber Springer New York

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470