Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
LSTM Recurrent Neural Networks for Signature Verification
Details
The author investigated the application of Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) to the task of signature verification. Traditional RNNs are capable of modeling dynamical systems with hidden states; they have been successfully applied to domains ranging from financial forecasting to control and speech recognition. This manuscript is the result of successfully applying on-line signature time series data to traditional LSTM, LSTM with forget gates and LSTM with peephole connections algorithms originally developed by S. Hochreiter and J. Schmidhuber. It can be clearly seen in this pattern classification problem that traditional LSTM RNNs outperform LSTMs with forget gates and peephole connections. The latter also outperform traditional RNNs which cannot seem to even learn this task due to the long-term dependency problem.
Autorentext
Conrad completed his Masters Degree with Cum Laude with the Intelligent Systems Group of the Department of Computer Science at the University of the Western Cape. His research interests span Recurrent Neural Networks (RNNs) and their applications to time series prediction as well as the application thereof to Biometric technologies.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783846589946
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B150mm x T7mm
- Jahr 2012
- EAN 9783846589946
- Format Kartonierter Einband
- ISBN 3846589942
- Veröffentlichung 06.02.2012
- Titel LSTM Recurrent Neural Networks for Signature Verification
- Autor Conrad Tiflin
- Untertitel A Novel Approach
- Gewicht 173g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 104
- Genre Informatik