Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning and Data Mining for Sports Analytics
Details
This book constitutes the refereed proceedings of the 10th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2023, held in Turin, Italy, in September 2023. The 16 full papers included in this book were carefully reviewed and selected from 31 submissions. They were organized in topical sections as follows: Football/Soccer, Basketball, Other team sports, Individual sports.
Inhalt
Sports Data Analytics: An Art and a Science.- Foot ball/ soccer.- ETSY: A rule-based approach to Event and Tracking data Synchronization.- Masked Autoencoder Pretraining for Event Classi cation in Elite Soccer.- Quanti cation of Turnover Danger with xCounter.- Pass Receiver and Outcome Prediction in Soccer Using Temporal.- Graph Networks.- Field Depth Matters: Comparing the Valuation of Passes in Football.- Basket ball.- Momentum matters: investigating high-pressure situations in the NBA through scoring probability.- Are Sports Awards About Sports? Using AI to Find the Answer.- The Big Three: a practical framework for designing Decision Support.- Systems in Sports and an application for basketball.- Ot her t eam sp ort s.- What data should be collected for a good handball Expected Goal model? .-Identifying Player Roles in Ice Hockey.- Position Prediction.- Boat speed prediction in SailGP.- Individual sp ort s.- Exploring Table Tennis Analytics: Domination, Expected Score and Shot Diversity.- Specialization Evaluation.- Exploiting Clustering for Sports Data Analysis: A Study of Public and Real-world Datasets.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031538322
- Genre Information Technology
- Auflage 2024
- Editor Ulf Brefeld, Albrecht Zimmermann, Jan van Haaren, Jesse Davis
- Lesemotiv Verstehen
- Anzahl Seiten 216
- Größe H235mm x B155mm x T12mm
- Jahr 2024
- EAN 9783031538322
- Format Kartonierter Einband
- ISBN 3031538323
- Veröffentlichung 26.02.2024
- Titel Machine Learning and Data Mining for Sports Analytics
- Untertitel 10th International Workshop, MLSA 2023, Turin, Italy, September 18, 2023, Revised Selected Papers
- Gewicht 335g
- Herausgeber Springer Nature Switzerland
- Sprache Englisch