Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning and Data Mining for Sports Analytics
Details
This book constitutes the refereed proceedings of the 9th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2022, held in Grenoble, France, during September 19, 2022.
The 10 full papers included in this book were carefully reviewed and selected from 18 submissions. They were organized in topical sections as follows: Football, Racket sports, Cycling.
Inhalt
Football.- Towards expected counter - Using comprehensible features to predict counterattacks.- Shot analysis in different levels of German football using Expected Goals.- Analyzing passing sequences for the prediction of goal-scoring opportunities.- Let's penetrate the defense: A machine learning model for prediction and valuation of penetrative passes.- Evaluation of creating scoring opportunities for teammates in soccer via trajectory prediction.- Cost-efficient and bias-robust sports player tracking by integrating GPS and video.- Racket sports.- Predicting tennis serve directions with machine learning.- Discovering and visualizing tactics in table tennis games based on subgroup discovery.- Cycling.- Athlete monitoring in professional road cycling using similarity search on time series data.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031275265
- Genre Information Technology
- Auflage 1st edition 2023
- Editor Ulf Brefeld, Albrecht Zimmermann, Jan van Haaren, Jesse Davis
- Lesemotiv Verstehen
- Anzahl Seiten 140
- Größe H235mm x B155mm x T8mm
- Jahr 2023
- EAN 9783031275265
- Format Kartonierter Einband
- ISBN 3031275268
- Veröffentlichung 25.02.2023
- Titel Machine Learning and Data Mining for Sports Analytics
- Untertitel 9th International Workshop, MLSA 2022, Grenoble, France, September 19, 2022, Revised Selected Papers
- Gewicht 224g
- Herausgeber Springer Nature Switzerland
- Sprache Englisch