Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track

CHF 125.25
Auf Lager
SKU
T8U30RCLSFD
Stock 1 Verfügbar
Geliefert zwischen Mi., 14.01.2026 und Do., 15.01.2026

Details

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track.

The volumes are organized in topical sections as follows:

Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering. Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.

Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.

Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning. Part V: Robustness; Time Series; Transfer and Multitask Learning.

Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.

Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.


Klappentext

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: Robustness; Time Series; Transfer and Multitask Learning. Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.


Inhalt
Applied Machine Learning.- Computational Social Sciences.- Finance.- Hardware and Systems.- Healthcare & Bioinformatics.- Human-Computer Interaction.- Recommendation and Information Retrieval.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031434266
    • Genre Information Technology
    • Auflage 1st edition 2023
    • Editor Gianmarco de Francisci Morales, Claudia Perlich, Natali Ruchansky, Nicolas Kourtellis, Elena Baralis, Francesco Bonchi
    • Lesemotiv Verstehen
    • Anzahl Seiten 760
    • Größe H235mm x B155mm x T41mm
    • Jahr 2023
    • EAN 9783031434266
    • Format Kartonierter Einband
    • ISBN 3031434269
    • Veröffentlichung 18.09.2023
    • Titel Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
    • Untertitel European Conference, ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part VI
    • Gewicht 1130g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470