Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning and Knowledge Discovery in Databases
Details
The three volume proceedings LNAI 11906 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019. The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track.
The contributions were organized in topical sections named as follows:
Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization.
Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing.
Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track.
Chapter "Heavy-tailed Kernels Reveal a Finer Cluster Structure in t-SNE Visualisations" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Klappentext
The three volume proceedings LNAI 11906 11908 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, held in Würzburg, Germany, in September 2019. The total of 130 regular papers presented in these volumes was carefully reviewed and selected from 733 submissions; there are 10 papers in the demo track. The contributions were organized in topical sections named as follows: Part I: pattern mining; clustering, anomaly and outlier detection, and autoencoders; dimensionality reduction and feature selection; social networks and graphs; decision trees, interpretability, and causality; strings and streams; privacy and security; optimization. Part II: supervised learning; multi-label learning; large-scale learning; deep learning; probabilistic models; natural language processing. Part III: reinforcement learning and bandits; ranking; applied data science: computer vision and explanation; applied data science: healthcare; applied data science: e-commerce, finance, and advertising; applied data science: rich data; applied data science: applications; demo track. Chapter "Heavy-tailed Kernels Reveal a Finer Cluster Structure in t-SNE Visualisations" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Inhalt
Pattern Mining.- Clustering, Anomaly and Outlier Detection, and Autoencoders.- Dimensionality Reduction and Feature Selection.- Social Networks and Graphs.- Decision Trees, Interpretability, and Causality.- Strings and Streams.- Privacy and Security.- Optimization.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030461492
- Editor Ulf Brefeld, Elisa Fromont, Céline Robardet, Arno Knobbe, Marloes Maathuis, Andreas Hotho
- Sprache Englisch
- Auflage 1st edition 2020
- Größe H235mm x B155mm x T44mm
- Jahr 2020
- EAN 9783030461492
- Format Kartonierter Einband
- ISBN 3030461491
- Veröffentlichung 02.05.2020
- Titel Machine Learning and Knowledge Discovery in Databases
- Untertitel European Conference, ECML PKDD 2019, Wrzburg, Germany, September 16-20, 2019, Proceedings, Part I
- Gewicht 1212g
- Herausgeber Springer International Publishing
- Anzahl Seiten 816
- Lesemotiv Verstehen
- Genre Informatik