Machine Learning and Knowledge Discovery in Databases: Research Track

CHF 136.10
Auf Lager
SKU
K6A55HNS6GL
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023.

The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track.

The volumes are organized in topical sections as follows:

Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.

Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning.

Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning.

Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.

Part V: Robustness; Time Series; Transfer and Multitask Learning.

Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval.

Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.

Chapter 41 is available open access under a Creative Commons Attribution 4.0 International License via Springerlink.


Klappentext

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2023, which took place in Turin, Italy, in September 2023. The 196 papers were selected from the 829 submissions for the Research Track, and 58 papers were selected from the 239 submissions for the Applied Data Science Track. The volumes are organized in topical sections as follows: Part I: Active Learning; Adversarial Machine Learning; Anomaly Detection; Applications; Bayesian Methods; Causality; Clustering.Part II: Computer Vision; Deep Learning; Fairness; Federated Learning; Few-shot learning; Generative Models; Graph Contrastive Learning. Part III: Graph Neural Networks; Graphs; Interpretability; Knowledge Graphs; Large-scale Learning. Part IV: Natural Language Processing; Neuro/Symbolic Learning; Optimization; Recommender Systems; Reinforcement Learning; Representation Learning.Part V: Robustness; Time Series; Transfer and Multitask Learning. Part VI: Applied Machine Learning; Computational Social Sciences; Finance; Hardware and Systems; Healthcare & Bioinformatics; Human-Computer Interaction; Recommendation and Information Retrieval. Part VII: Sustainability, Climate, and Environment.- Transportation & Urban Planning.- Demo.


Inhalt
Graph Neural Networks.- Graphs.- Interpretability.- Knowledge Graphs.- Large-scale Learning.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031434174
    • Genre Information Technology
    • Auflage 2023
    • Editor Danai Koutra, Claudia Plant, Francesco Bonchi, Elena Baralis, Manuel Gomez Rodriguez
    • Lesemotiv Verstehen
    • Anzahl Seiten 768
    • Größe H235mm x B155mm x T41mm
    • Jahr 2023
    • EAN 9783031434174
    • Format Kartonierter Einband
    • ISBN 303143417X
    • Veröffentlichung 17.09.2023
    • Titel Machine Learning and Knowledge Discovery in Databases: Research Track
    • Untertitel European Conference, ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part III
    • Gewicht 1142g
    • Herausgeber Springer Nature Switzerland
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470