Machine Learning Applications for Intelligent Energy Management

CHF 202.20
Auf Lager
SKU
8R70RA98J19
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

As carbon dioxide (CO2) emissions and other greenhouse gases constantly rise and constitute the main contributor to climate change, temperature rise and global warming, artificial intelligence, big data, Internet of things, and blockchain technologies are enlisted to help enforce energy transition and transform the entire energy sector.

The book at hand presents state-of-the-art developments in artificial intelligence-empowered analytics of energy data and artificial intelligence-empowered application development. Topics covered include a presentation of the various stakeholders in the energy sector and their corresponding required analytic services, such as state-of-the-art machine learning, artificial intelligence, and optimization models and algorithms tailored for a series of demanding energy problems and aiming at providing optimal solutions under specific constraints.

Professors, researchers, scientists, engineers, and students in energy sector-related disciplines are expected to be inspired and benefit from this book, along with readers from other disciplines wishing to learn more about this exciting new field of research.


Presents novel applications of AI in the domain of building energy efficiency and smart energy management Provides detailed paradigms based on real data and real-life applications Shows a methodological framework of each application in detail

Inhalt

AI-Powered Transformation and Decentralization of the Energy Ecosystem.- An Explainable AI-based Framework for Supporting Decisions in Energy Management.- The big data value chain for the provision of AI-enabled energy analytics services.- MODULAR BIG DATA APPLICATIONS FOR ENERGY SERVICES IN BUILDINGS AND DISTRICTS: DIGITAL TWINS, TECHNICAL BUILDING MANAGEMENT SYSTEMS AND ENERGY SAVINGS CALCULATIONS.- Neural network based approaches for fault diagnosis of photovoltaic systems.- Clustering of building stock.- BIG DATA SUPPORTED ANALYTICS FOR NEXT GENERATION ENERGY PERFORMANCE CERTIFICATES.- Synthetic data on buildings.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031479083
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2024
    • Editor Haris Doukas, Elissaios Sarmas, Vangelis Marinakis
    • Lesemotiv Verstehen
    • Anzahl Seiten 240
    • Herausgeber Springer Nature Switzerland
    • Größe H241mm x B160mm x T18mm
    • Jahr 2024
    • EAN 9783031479083
    • Format Fester Einband
    • ISBN 3031479084
    • Veröffentlichung 28.01.2024
    • Titel Machine Learning Applications for Intelligent Energy Management
    • Untertitel Invited Chapters from Experts on the Energy Field
    • Gewicht 573g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470