Machine Learning-based Prediction of Missing Parts for Assembly

CHF 149.95
Auf Lager
SKU
GRQKTI64NC6
Stock 1 Verfügbar
Geliefert zwischen Fr., 21.11.2025 und Mo., 24.11.2025

Details

Manufacturing companies face challenges in managing increasing process complexity while meeting demands for on-time delivery, particularly evident during critical processes like assembly. The early identification of potential missing parts at the beginning assembly emerges as a crucial strategy to uphold delivery commitments. This book embarks on developing machine learning-based prediction models to tackle this challenge. Through a systemic literature review, deficiencies in current predictive methodologies are highlighted, notably the underutilization of material data and a late prediction capability within the procurement process. Through case studies within the machine industry a significant influence of material data on the quality of models predicting missing parts from in-house production was verified. Further, a model for predicting delivery delays in the purchasing process was implemented, which makes it possible to predict potential missing parts from suppliers at the time of ordering. These advancements serve as indispensable tools for production planners and procurement professionals, empowering them to proactively address material availability challenges for assembly operations.


Autorentext

Fabian Steinberg studied production technology at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen with a Master's degree. In his subsequent doctorate at the Chair of International Production Engineering and Management (IPEM) at the University of Siegen, he focussed on the prediction of missing parts for assembly using artificial intelligence.


Inhalt

Introduction.- Theoretical Background for the Prediction of Missing Parts for Assembly.- Publication I: Approaches for the Prediction of Lead Times in an Engineer to Order Environment - a Systematic Review.- Publication II: Impact of Material Data in Assembly Delay Prediction - a Machine Learning-based Case Study in Machinery Industry.- Publication III: Machine Learning-based Prediction of Missing Components for Assembly - a Case Study at an Engineer-to-order Manufacturer.- Publication IV: Predicting Supplier Delays Utilizing Machine Learning - a Case Study in German Manufacturing Industry.- Critical Refection and Future Perspective.- Summary.- References.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783658450328
    • Genre Technology Encyclopedias
    • Auflage 2024
    • Lesemotiv Verstehen
    • Anzahl Seiten 180
    • Herausgeber Springer Fachmedien Wiesbaden
    • Größe H210mm x B148mm x T11mm
    • Jahr 2024
    • EAN 9783658450328
    • Format Kartonierter Einband
    • ISBN 3658450320
    • Veröffentlichung 20.06.2024
    • Titel Machine Learning-based Prediction of Missing Parts for Assembly
    • Autor Fabian Steinberg
    • Untertitel Findings from Production Management Research
    • Gewicht 241g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470