Machine Learning for Adaptive Many-Core Machines - A Practical Approach

CHF 165.60
Auf Lager
SKU
T861DLCKIUE
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mo., 03.11.2025 und Di., 04.11.2025

Details

The overwhelming data produced everyday and the increasing performance and cost requirements of applications are transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data.

This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind. It presents a series of new techniques to enhance, scale and distribute data in a Big Learning framework. It is not intended to be a comprehensive survey of the state of the art of the whole field of machine learning for Big Data. Its purpose is less ambitious and more practical: to explain and illustrate existing and novel GPU-based ML algorithms, not viewed as a universal solution for the Big Data challenges but rather as part of the answer, which may require the use of different strategies coupled together.


Recent research in machine learning for adaptive many-core machines Presents a practical approach Written by experts in the field

Inhalt
Introduction.- Supervised Learning.- Unsupervised and Semi-supervised Learning.- Large-Scale Machine Learning.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319069371
    • Auflage 2015
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H241mm x B160mm x T20mm
    • Jahr 2014
    • EAN 9783319069371
    • Format Fester Einband
    • ISBN 3319069373
    • Veröffentlichung 16.07.2014
    • Titel Machine Learning for Adaptive Many-Core Machines - A Practical Approach
    • Autor Bernardete Ribeiro , Noel Lopes
    • Untertitel Studies in Big Data 7
    • Gewicht 565g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 264

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.