Machine Learning for Cyber Physical Systems

CHF 165.55
Auf Lager
SKU
7KH3O73HHI7
Stock 1 Verfügbar
Geliefert zwischen Fr., 26.12.2025 und Mo., 29.12.2025

Details

The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers **from the international Conference ML4CPS Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015.

Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.


Includes the full proceedings of the 2015 ML4CPS Machine Learning for Cyber Physical Systems Conference Presents recent and new advances in automated machine learning methods Provides an accessible and succinct overview on machine learning for cyber physical systems Includes supplementary material: sn.pub/extras

Autorentext

Prof. Dr. Oliver Niggemann ist seit November 2008 Mitglied des inIT. Er vertritt das Fachgebiet Embedded Software Engineering in der Lehre und forscht im inIT in den Bereichen Verteilte Echtzeit-Software und der Analyse und Diagnose verteilter Systeme. Gleichzeitig forscht Prof. Niggemann im Fraunhofer-Anwendungszentrum Industrial Automation (INA) in Lemgo.

Prof. Dr.-Ing. Jürgen Beyerer ist in Personalunion Inhaber des Lehrstuhls für Interaktive Echtzeitsysteme an der Fakultät für Informatik und Leiter des Fraunhofer IOSB. Die Schwerpunkte in Forschung und Lehre am Lehrstuhl für Interaktive Echtzeitsysteme liegen auf den Themen: automatische Sichtprüfung und Bildauswertung, Mustererkennung und Signal- und Informationsverarbeitung.


Inhalt
Development of a Cyber-Physical System based on selective dynamic Gaussian naive Bayes model for a self-predict laser surface heat treatment processcontrol.- Evidence Grid Based Information Fusion for Semantic Classifiers in Dynamic Sensor Networks.- Forecasting Cellular Connectivity for Cyber-Physical Systems: A Machine Learning Approach.- Towards Optimized Machine Operations by Cloud Integrated Condition Estimation.- Prognostics Health Management System based on Hybrid Model to Predict Failures of a Planetary Gear Transmission.- Evaluation of Model-Based Condition Monitoring Systems in Industrial Application Cases.- Towards a novel learning assistant for networked automation systems.- Effcient Image Processing System for an Industrial Machine Learning Task.- Efficient engineering in special purpose machinery through automated control code synthesis based on a functional categorisation.- Geo-Distributed Analytics for the Internet of Things.- Implementation and Comparison of Cluster-Based PSO Extensions in Hybrid Settings with Efficient Approximation.- Machine-specifc Approach for Automatic Classifcation of Cutting Process Efficiency.- Meta-analysis of Maintenance Knowledge Assets Towards Predictive Cost Controlling of Cyber Physical Production Systems.- Towards Autonomously Navigating and Cooperating Vehicles in Cyber-Physical Production Systems.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783662488362
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2016
    • Editor Jürgen Beyerer, Oliver Niggemann
    • Lesemotiv Verstehen
    • Anzahl Seiten 128
    • Herausgeber Springer Berlin Heidelberg
    • Größe H240mm x B168mm x T8mm
    • Jahr 2016
    • EAN 9783662488362
    • Format Kartonierter Einband
    • ISBN 3662488361
    • Veröffentlichung 20.02.2016
    • Titel Machine Learning for Cyber Physical Systems
    • Untertitel Selected papers from the International Conference ML4CPS 2015
    • Gewicht 229g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470