Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning for Evolution Strategies
Details
This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research.
State of the art presentation of Machine Learning in Evolution Strategies Condensed presentation Short introduction and recent research Includes supplementary material: sn.pub/extras
Inhalt
Part I Evolution Strategies.- Part II Machine Learning.- Part III Supervised Learning.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319333816
- Genre Technology Encyclopedias
- Auflage 1st edition 2016
- Lesemotiv Verstehen
- Anzahl Seiten 136
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T14mm
- Jahr 2016
- EAN 9783319333816
- Format Fester Einband
- ISBN 331933381X
- Veröffentlichung 06.06.2016
- Titel Machine Learning for Evolution Strategies
- Autor Oliver Kramer
- Untertitel Studies in Big Data 20
- Gewicht 377g
- Sprache Englisch