Machine Learning for Medical Image Reconstruction

CHF 73.60
Auf Lager
SKU
RD7F99OSQBV
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 28.10.2025 und Mi., 29.10.2025

Details

This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually.

The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Inhalt

Deep Learning for Magnetic Resonance Imaging.- 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI.- Deep Parallel MRI Reconstruction Network Without Coil Sensitivities.- Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data.- Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI.- Model-based Learning for Quantitative Susceptibility Mapping.- Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks.- Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping.- Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction.- Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI.- AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis.- Deep Learning for General Image Reconstruction.- A deep prior approach to magnetic particle imaging.- End-To-End Convolutional NeuralNetwork for 3D Reconstruction of Knee Bones From Bi-Planar X-Ray Images.- Cellular/Vascular Reconstruction using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation.- Improving PET-CT Image Segmentation via Deep Multi-Modality Data Augmentation.- Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030615970
    • Editor Farah Deeba, Jong Chul Ye, Tobias Würfl, Patricia Johnson
    • Sprache Englisch
    • Auflage 1st edition 2020
    • Größe H235mm x B155mm x T10mm
    • Jahr 2020
    • EAN 9783030615970
    • Format Kartonierter Einband
    • ISBN 3030615979
    • Veröffentlichung 20.10.2020
    • Titel Machine Learning for Medical Image Reconstruction
    • Untertitel Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings
    • Gewicht 271g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 172
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.