Machine Learning for Medical Image Reconstruction

CHF 79.20
Auf Lager
SKU
U1OFOMBKC8V
Stock 1 Verfügbar
Geliefert zwischen Do., 15.01.2026 und Fr., 16.01.2026

Details

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2021, held in conjunction with MICCAI 2021, in October 2021. The workshop was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic. The 13 papers presented were carefully reviewed and selected from 20 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction.


Inhalt
Deep Learning for Magnetic Resonance Imaging.- HyperRecon: Regularization-Agnostic CS-MRI Reconstruction with Hypernetworks.- Efficient Image Registration Network For Non-Rigid Cardiac Motion Estimation.- Evaluation of the robustness of learned MR image reconstruction to systematic deviations between training and test data for the models from the fastMRI challenge.- Self-Supervised Dynamic MRI Reconstruction.- A Simulation Pipeline to Generate Realistic Breast Images For Learning DCE-MRI Reconstruction.- Deep MRI Reconstruction with Generative Vision Transformers.- Distortion Removal and Deblurring of Single-Shot DWI MRI Scans.- One Network to Solve Them All: A Sequential Multi-Task Joint Learning Network Framework for MR Imaging Pipeline.- Physics-informed self-supervised deep learning reconstruction for accelerated rst-pass perfusion cardiac MRI.- Deep Learning for General Image Reconstruction.- Noise2Stack: Improving Image Restoration by Learning from Volumetric Data.- Real-time Video Denoising in Fluoroscopic Imaging.- A Frequency Domain Constraint for Synthetic and Real X-ray Image Super Resolution.- Semi- and Self-Supervised Multi-View Fusion of 3D Microscopy Images using Generative Adversarial Networks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030885519
    • Genre Information Technology
    • Auflage 1st ed. 2021
    • Editor Nandinee Haq, Patricia Johnson, Andreas Maier, Tobias Würfl, Jaejun Yoo
    • Lesemotiv Verstehen
    • Anzahl Seiten 142
    • Größe H8mm x B155mm x T235mm
    • Jahr 2021
    • EAN 9783030885519
    • Format Kartonierter Einband
    • ISBN 978-3-030-88551-9
    • Titel Machine Learning for Medical Image Reconstruction
    • Untertitel 4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470