Machine Learning for Metallic Corrosion Modeling: A Computational Exploration

CHF 33.20
Auf Lager
SKU
NIDPCQRFHPA
Stock 1 Verfügbar
Geliefert zwischen Mi., 14.01.2026 und Do., 15.01.2026

Details

Metal corrosion, from rusty cars to crumbling bridges, costs billions. Enter machine learning! This powerful tool analyzes vast amounts of data to predict and prevent corrosion. By simulating how metals interact with their environment, scientists can design better materials and protective coatings. It's a computational exploration to outsmart rust and save our infrastructure!

Machine learning fights rust! Simulations predict how metals corrode. AI = stronger bridges, less rusty cars!

Autorentext
Professor Kiran is a leading expert in the field of olfaction, the sense of smell. With a distinguished career in sensory science, Professor Kiran's research has focused on unraveling the mysteries of the human nose and its profound impact on our lives. Professor Kiran's passion for the olfactory system stems from a deep fascination with its intricate workings and often underestimated influence. Their expertise encompasses the biological mechanisms of smell, the psychology of scent perception, and the far-reaching consequences of olfaction in health, behavior, and cognition. Professor Kiran's groundbreaking research has been published in top scientific journals and has garnered significant recognition within the scientific community. Their dedication to science communication extends beyond academia, as evidenced by their captivating book, "Smelling Sharp: How Your Nose Works and Why It Matters". In this book, Professor Kiran breaks down complex scientific concepts into an engaging and accessible narrative, inviting readers to explore the fascinating world of scent. Professor Kiran's expertise and captivating explanations make them a sought-after speaker and science communicator. Their tireless efforts to illuminate the power of smell promise to reshape our understanding of this remarkable sense.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783384280343
    • Herausgeber tredition
    • Anzahl Seiten 152
    • Lesemotiv Verstehen
    • Genre IT Encyclopedias
    • Gewicht 269g
    • Untertitel DE
    • Größe H234mm x B155mm x T11mm
    • Jahr 2024
    • EAN 9783384280343
    • Format Kartonierter Einband
    • ISBN 3384280342
    • Veröffentlichung 05.07.2024
    • Titel Machine Learning for Metallic Corrosion Modeling: A Computational Exploration
    • Autor Kiran
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470