Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning for Multimedia Content Analysis
Details
This volume introduces machine learning techniques that are particularly effective for modeling multimedia data and common tasks of multimedia content analysis. It demonstrates the application of key machine learning techniques through case studies.
Multimedia data, such as digital images, audio streams and motion video programs, exhibit richer structures than simple, isolated data items. This volume introduces machine learning techniques that are particularly powerful and effective for modeling multimedia data and common tasks of multimedia content analysis. It systematically covers key machine learning techniques in an intuitive fashion and demonstrates their applications through case studies. Coverage includes examples of unsupervised learning, generative models and discriminative models. In addition, the book examines Maximum Margin Markov (M3) networks, which strive to combine the advantages of both the graphical models and Support Vector Machines (SVM).
First book dedicated to the multimedia community to address unique problems and interesting applications of machine learning in this area Includes examples of unsupervised learning, generative models and discriminative models Includes Maximum Margin Markov (M3) networks, which strives to combine the advantages of both the graphical models and Support Vector Machines (SVM) Includes supplementary material: sn.pub/extras
Inhalt
Unsupervised Learning.- Dimension Reduction.- Data Clustering Techniques.- Generative Graphical Models.- of Graphical Models.- Markov Chains and Monte Carlo Simulation.- Markov Random Fields and Gibbs Sampling.- Hidden Markov Models.- Inference and Learning for General Graphical Models.- Discriminative Graphical Models.- Maximum Entropy Model and Conditional Random Field.- Max-Margin Classifications.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781441943538
- Auflage Softcover reprint of hardcover 1st edition 2007
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T17mm
- Jahr 2010
- EAN 9781441943538
- Format Kartonierter Einband
- ISBN 1441943536
- Veröffentlichung 23.11.2010
- Titel Machine Learning for Multimedia Content Analysis
- Autor Wei Xu , Yihong Gong
- Untertitel Multimedia Systems and Applications 30
- Gewicht 452g
- Herausgeber Springer US
- Anzahl Seiten 296
- Lesemotiv Verstehen