Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning for the Quantified Self
Details
This book explains the complete loop to effectively use self-tracking data for machine learning. While it focuses on self-tracking data, the techniques explained are also applicable to sensory data in general, making it useful for a wider audience. Discussing concepts drawn from from state-of-the-art scientific literature, it illustrates the approaches using a case study of a rich self-tracking data set. Self-tracking has become part of the modern lifestyle, and the amount of data generated by these devices is so overwhelming that it is difficult to obtain useful insights from it. Luckily, in the domain of artificial intelligence there are techniques that can help out: machine-learning approaches allow this type of data to be analyzed. While there are ample books that explain machine-learning techniques, self-tracking data comes with its own difficulties that require dedicated techniques such as learning over time and across users.
Presents a unique overview of dedicated machine learning techniques for sensor data Features hands-on exercises, including those related to mobile app development Illustrates the techniques by means of examples to make them more easily understandable Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Basics of Sensory Data.- Feature Engineering based on Sensory Data.- Predictive Modeling without Notion of Time.- Predictive Modeling with Notion of Time.- Reinforcement Learning to Provide Feedback and Support.- Discussion.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319663074
- Genre Technology Encyclopedias
- Auflage 1st edition 2018
- Lesemotiv Verstehen
- Anzahl Seiten 248
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T20mm
- Jahr 2017
- EAN 9783319663074
- Format Fester Einband
- ISBN 3319663070
- Veröffentlichung 05.10.2017
- Titel Machine Learning for the Quantified Self
- Autor Burkhardt Funk , Mark Hoogendoorn
- Untertitel On the Art of Learning from Sensory Data
- Gewicht 541g
- Sprache Englisch