Machine Learning Foundations

CHF 202.20
Auf Lager
SKU
1VLRGJP46H8
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning.Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning;Outlines the computation paradigm for solving classification, regression, and clustering;Features essential techniques for building the a new generation of machine learning.

Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning Outlines the computation paradigm for solving classification, regression, and clustering Features essential techniques for building the a new generation of machine learning

Autorentext

Taeho Jo is the president and the founder of the company, Alpha Lab AI which makes business concerned with Artificial Intelligence. He received his Bachelor, Master, and PhD degrees from Korea University in 1994, from Pohang University in 1997, and from University of Ottawa, 2006, respectively. He has published more than 180 research papers, primarily in text mining, machine learning, neural networks, and information retrieval. He previously published the book "Text Mining: Concept, Implementation, and Big Data Challenge" (Springer 2018).


Inhalt

Part I. Foundation.- Chapter 1. Introduction.- Chapter 2. Numerical Vectors.- Chapter 3.Data Encoding.- Chapter 4. Simple Machine Learning Algorithms.- Part II. Supervised Learning.- Chapter 5. Instance based Learning.- Chapter 6. Probabilistic Learning.- Chapter 7. Decision Tree.- Chapter 8. Support Vector Machine.- Part III. Unsupervised Learning.- Chapter 9. Simple Clustering Algorithms.- Chapter 10. K Means Algorithm.- Chapter 11. EM Algorithm.- Chapter 12. Advanced Clustering.- Part IV. Advanced Topics.- Chapter 13. Ensemble Learning.- Chapter 14. Semi-Supervised Learning.- Chapter 15. Temporal Learning.- Chapter 16. Reinforcement Learning. <p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030659028
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage 1st edition 2021
    • Sprache Englisch
    • Anzahl Seiten 412
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T23mm
    • Jahr 2022
    • EAN 9783030659028
    • Format Kartonierter Einband
    • ISBN 303065902X
    • Veröffentlichung 13.02.2022
    • Titel Machine Learning Foundations
    • Autor Taeho Jo
    • Untertitel Supervised, Unsupervised, and Advanced Learning
    • Gewicht 622g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470