Machine Learning in Medical Imaging

CHF 77.55
Auf Lager
SKU
2LESRK422OJ
Stock 1 Verfügbar
Geliefert zwischen Di., 11.11.2025 und Mi., 12.11.2025

Details

This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Medical Imaging, MLMI 2013, held in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2013, in Nagoya, Japan, in September 2013. The 32 contributions included in this volume were carefully reviewed and selected from 57 submissions. They focus on major trends and challenges in the area of machine learning in medical imaging and aim to identify new cutting-edge techniques and their use in medical imaging.

Conference proceedings of the International Workshop on Machine Learning in Medical Imaging, MLMI 2013

Inhalt
Unsupervised Deep Learning for Hippocampus Segmentation in 7.0 Tesla MR Images.- Integrating Multiple Network Properties for MCI Identification.- Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation.- Volumetric Segmentation of Key Fetal Brain Structures in 3D Ultrasound.- Sparse Classification with MRI Based Markers for Neuromuscular Disease Categorization.- Fully Automatic Detection of the Carotid Artery from Volumetric Ultrasound Images Using Anatomical Position-Dependent LBP Features.- A Transfer-Learning Approach to Image Segmentation Across Scanners by Maximizing Distribution Similarity.- A New Algorithm of Electronic Cleansing for Weak Faecal-Tagging CT Colonography.- A Unified Approach to Shape Model Fitting and Non-rigid Registration.- A Bayesian Algorithm for Image-Based Time-to-Event Prediction.- Patient-Specific Manifold Embedding of Multispectral Images Using Kernel Combinations.- fMRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics.- Patch-Based Segmentation without Registration: Application to Knee MRI.- Flow-Based Correspondence Matching in Stereovision.- Thickness NETwork (ThickNet) Features for the Detection of Prodromal AD.- Metric Space Structures for Computational Anatomy.- Discriminative Group Sparse Representation for Mild Cognitive Impairment Classification.- Temporally Dynamic Resting-State Functional Connectivity Networks for Early MCI Identification.- An Improved Optimization Method for the Relevance Voxel Machine.- Disentanglement of Session and Plasticity Effects in Longitudinal fMRI Studies.- Identification of Alzheimer's Disease Using Incomplete Multimodal Dataset via Matrix Shrinkage and Completion.- On Feature Relevance in Image-Based Prediction Models: An Empirical Study.- Decision Forests with Spatio-Temporal Features for Graph-Based Tumor Segmentation in 4D Lung CT.- Improving Probabilistic Image Registration via Reinforcement Learning and Uncertainty Evaluation.- HEp-2 Cell Image Classification: AComparative Analysis.- A 2.5D Colon Wall Flattening Model for CT-Based Virtual Colonoscopy.- Augmenting Auto-context with Global Geometric Features for Spinal Cord Segmentation.- Large-Scale Manifold Learning Using an Adaptive Sparse Neighbor Selection Approach for Brain Tumor Progression Prediction.- Ensemble Universum SVM Learning for Multimodal Classification of Alzheimer's Disease.- Joint Sparse Coding Spatial Pyramid Matching for Classification of Color Blood Cell Image.- Multi-task Sparse Classifier for Diagnosis of MCI Conversion to AD with Longitudinal MR Images.- Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319022666
    • Auflage 2013
    • Editor Guorong Wu, Daoqiang Zhang, Fei Wang, Pingkun Yan, Kenji Suzuki, Dinggang Shen
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T16mm
    • Jahr 2013
    • EAN 9783319022666
    • Format Kartonierter Einband
    • ISBN 3319022660
    • Veröffentlichung 21.08.2013
    • Titel Machine Learning in Medical Imaging
    • Untertitel 4th International Workshop, MLMI 2013, Held in Conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013, Proceedings
    • Gewicht 423g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 276
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470