Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Machine Learning, Optimization, and Data Science
Details
This two-volume set, LNCS 13163-13164, constitutes the refereed proceedings of the 7th International Conference on Machine Learning, Optimization, and Data Science, LOD 2021, together with the first edition of the Symposium on Artificial Intelligence and Neuroscience, ACAIN 2021. The total of 86 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 215 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
Inhalt
Deep Learning.- Machine Learning.- Reinforcement Learning.- Neural Networks.- Deep Reinforcement Learning.- Optimization.- Global Optimization.- Multi-Objective Optimization.- Computational Optimization.- Data Science.- Big Data.- Data Analytics.- Artificial Intelligence.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030954697
- Genre Information Technology
- Auflage 1st edition 2022
- Editor Giuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Renato Umeton, Giorgio Jansen, Panos M. Pardalos, Giovanni Giuffrida, Gabriele La Malfa
- Lesemotiv Verstehen
- Anzahl Seiten 572
- Größe H235mm x B155mm x T31mm
- Jahr 2022
- EAN 9783030954697
- Format Kartonierter Einband
- ISBN 3030954692
- Veröffentlichung 02.02.2022
- Titel Machine Learning, Optimization, and Data Science
- Untertitel 7th International Conference, LOD 2021, Grasmere, UK, October 4-8, 2021, Revised Selected Papers, Part II
- Gewicht 855g
- Herausgeber Springer International Publishing
- Sprache Englisch